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a  b  s  t  r  a  c  t

A  previously  proposed  model  for representing  the  retention  factor  (k) of  an  analyte  in mixed  solvent
mobile  phases  was  extended  to  calculate  the  k of  different  analytes  with  respect  to  the  nature  of  analyte,
organic  modifier,  its  concentration  and  type  of  the  stationary  phase.  The  accuracy  of  the  proposed  method
was evaluated  by  calculating  mean  percentage  deviation  (MPD)  as  accuracy  criterion.  The  predicted  vs.
observed  plots  were  also  provided  as  goodness  of  fit  criteria.  The  developed  model  prediction  capability
eywords:
P-HPLC
odeling

etention time

compared  with  a  number  of  previous  models  (i.e.  LSER,  general  LSER  and  Oscik  equation)  through  MPD
and  fitting  plots.  The  proposed  method  provided  acceptable  predictions  with  the  advantage  of  modeling
the  effects  of  organic  modifiers,  mobile  phase  compositions,  columns  and  analytes  using  a  single  equation.
The  accuracy  of  developed  model  was  checked  using  the  one  column  and  one  analyte  out  cross  validation
analyses  and  the  results  showed  that  the  developed  model  was  able  to predict  the  unknown  analyte
retention  and  the  analytes  retentions  on  unknown  column  accurately.
. Introduction

Many efforts were made to provide mathematical models for
rediction of the retention factor of analytes in high performance

iquid chromatography (HPLC). These models were reviewed and
heir accuracies were compared [1,2]. Most of the proposed mod-
ls treat the retention factor data in specific conditions, such as
pecified analyte, various analytes on a specified column or speci-
ed organic modifier, or in a given organic modifier concentration.
lthough these models provided acceptable predictions, however

hey could be employed as mathematical tools for a single vari-
ble optimization and models for simultaneous representation of
arious affecting parameters are in demand to facilitate the multi-
ariate optimization in HPLC.

Organic modifier volume fraction based models (partition the-
ry) have been used to predict the retention data for a given analyte
n a given column with respect to mobile phase composition and

nown as linear model:

og km = log kw + Jϕ (1)

∗ Corresponding author. Tel.: +98 411 3379323; fax: +98 411 3363231.
E-mail address: ajouyban@hotmail.com (A. Jouyban).

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.07.034
© 2011 Elsevier B.V. All rights reserved.

or quadratic model:

log km = log kw + M1ϕ + M2ϕ2 (2)

where ϕ is the volume fraction of organic modifier, J, M1 and M2
are the model constants. These models have been widely checked
in an applicable range of organic modifier fractions. Although the
required number of experiments for obtaining the model parame-
ters of Eq. (1) is low, the organic modifier fraction applicable range
is narrow and Eq. (2) has the advantage of being useful for higher
range of ϕ [2].

Due to the complex nature of retention, the partition and
absorption theory have been combined in order to modeling the
retention of analytes in RPLC [3],  and the developed model (Oscik
equation) have been used for the prediction of log kw recently [4].
The general form of Oscik equation is:

log km = xl
1 log k1 + xl

2 log k2 + (xs
1 − xl

1)
(

log
k1

k2
+ Am

)
(3)

log k1 and log k2 (= log kw) could be estimated from a linear plot
of log km against xl

1 (mole fraction of organic modifier in mobile

phase). More details of these computations could be found in the
original Ref. [4].

Linear solvation energy relationships (LSER) have been devel-
oped to modeling various possible interactions of the different

dx.doi.org/10.1016/j.chroma.2011.07.034
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:ajouyban@hotmail.com
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ompounds by the stationary and mobile phases. The general form
f the Abraham model is:

P = c + e · E + s · S + a · A + b · B + v · V (4)

here SP is analyte property including the retention factor (log k), E
s the excess molar refraction, S is dipolarity/polarizability of ana-
yte, A denotes the analyte’s hydrogen-bond acidity, B stands for
he analyte’s hydrogen-bond basicity and V is the McGowan vol-
me  of the analyte. In Eq. (4) the coefficients c, e, s, a, b and v are the
odel constants representing solvent’s properties. Eq. (4) was used

or representing the retention factor of analytes in RP-HPLC with a
iven solvent composition (mono-solvents or mixed solvents) as:

og k = c′ + e′ · E + s′ · S + a′ · A + b′ · B + v′ · V (5)

n which the regressed parameters (i.e. c′, e′, s′, a′, b′ and v′) refer
o the differences of stationary and mobile phases; e′ refer to the
apability of interacting with analyte �- and n-electron pairs, s′

ipolarity/polarizability, a′ hydrogen-bond basicity (an acidic ana-
yte interacts with basic phase), b′ hydrogen-bond acidity and v′

ydrophobicity [5].  In another compilation by Sandi and Szepesy
6] the regressed parameters of Eq. (5) were obtained using reten-
ion factors of 34 analytes using acetonitrile–water (30:70) mobile
hase collected on 15 widely used stationary phases. In this work,
e have adopted these parameters to represent the effect of column

ype on retention factor of analytes.
Sandi and Szepesy in a series of publications [6–10] studied the

haracteristics of different stationary phases using the linear free
nergy relationships. They introduced the ability of LSER approach
o measure independently the contribution of individual molecu-
ar interactions to the retention process. In the first study [6] they
sed a set of 34 diverse polarity compounds retention factors which
btained in 15 different columns using a single mobile phase of
cetonitrile–water (30:70 v/v) by isocratic method. As they used
ater instead of buffer the obtained phase system coefficients of

SER equations were due to the packing materials without any sur-
ace modifications. They compared the proposed LSER method with

 PCA and concluded that the LSER approach provides more detailed
nd reliable description on the role and extent of the different
olecular interactions. In the next paper [8] they used LSER to study

he selectivity factors for various analyte pairs using previous data
ets. They used these factors to characterize the hydrophobic prop-
rties and different types of molecular interactions of the columns.
ne year later, the selectivity in RPLC evaluated using retention

actor of 31 diverse polarity analytes on 5 different columns using
cetonitrile–water and methanol–water in a composition range of
0–70% (v/v). The results showed that the selectivity is a complex
haracteristics affected by stationary phase characteristics, mobile
hase composition, organic modifier and analyte characteristics [9].

n another attempt they used these data to characterize the studied
olumns through the effect of the organic modifier and the mobile
hase composition [10]. The calculated regression coefficients of
he LSER equations for the different mobile phase compositions
ave been used to study the extent and relative importance of the

ndividual molecular interactions due to mobile phase composi-
ions. They concluded that the LSER is able to provide an estimate
f selectivity under different operating conditions (mobile and sta-
ionary phases). Later, Szepesy evaluated the effect of molecular
nteraction on retention and selectivity in RPLC in order to estab-
ish that the retention and selectivity depend on all participants
structure and properties of the stationary phase, the type and com-
osition of the mobile phase and the molecular properties of the
nalytes) of the system. He explained how the specific molecular

nteractions influence chromatographic behavior of analytes using
he LSER approach [11]. However they did not develop any model
o predict the retention factor according to the all studied effective
arameters.
A 1218 (2011) 6454– 6463 6455

Wang et al. [12] and Wang and Carr [13], developed a global
linear solvation energy relationship (GLSER) by combination of
the linear solvent strength theory and local LSER models which
simultaneously models retention in reversed-phase liquid chro-
matography as a function of both analyte LSER descriptors and
mobile phase composition. The general form of their model is:

log km = (log k0,w − log k0,Jϕ) + (vw − vJϕ) V + (sw − sJϕ)S
+ (aw − aJϕ)A + (bw − bJϕ)B + (ew − eJϕ)E

(6)

considering the local LSER model for a number of analytes in a given
mobile phase composition and column as:

log km = log kw + vV + sS + aA + bB + eE (7)

The J and log kw of Eq. (1) as linear free energy parameters can
be calculated using Eq. (7):

log kw = log k0,w + vwV + swS + awA + bwB + ewE (8)

J = log k0,J + vJV + sJS + aJA + bJB + eJE (9)

From these two equations we have:

log km = log k0,w + vwV + swS + awA + bwB + ewE
+ (log k0,J + vJV + sJS + aJA + bJB + eJE)ϕ

(10)

and by rewriting this equation we have Eq. (6).
Combining these two methods, Wang et al. [12] investigated the

prediction capability of the combined model and developed a global
version of the LSER model which is able to predict the retention of
a test analyte in the desired mobile phase composition in a given
column. They concluded that the developed model needed fewer
measurements comparing with LSER model and is more practical.

Abraham et al. [14] developed a general LSER by obtaining the
system coefficients for different mobile phase-column systems and
combined the obtained equations by calculating the ratio of the
coefficients to the v values of each system (which is constant for all
systems). The developed model is:

log km = c + v
(

V + s

v
S − a

v
A − b

v
B − e

v
E
)

(11)

where s/v, a/v, b/v and e/v coefficients are constant for a given
column-solvent system and the trained version of this equation
can be used to predict the retention factor of an analyte in different
mobile phase compositions.

Another general LSER model has been provided based on
quadratic model (Eq. (2))  [1]:

log km = (c0,w + e0,wE + s0,wS + a0,wA + b0,wB + v0,wV)
+ (cM1 + eM1E + sM1S + aM1A + bM1B + vM1V)ϕ
+ (cM2 + eM2E + sM2S + aM2A + bM2B + vM2V)ϕ2

(12)

which can be simplified to:

log km = (c0,w + e0,wE + s0,wS + a0,wA + b0,wB + v0,wV)

+M1ϕ + M2ϕ2 (13)

The last model provided the possibility to extend the prediction
capability of quadratic model to different analytes.

Recently, an ANN approach was  established to predict the reten-
tion factors of 26 pesticides in 6 different stationary phases and
several composition of acetonitrile–water (30–70% v/v) mobile
phase. They used 5 analytes, one mobile phase and one station-
ary phase descriptors as inputs and the mean percentage deviation
(MPD) for back calculated retention factors was about 45% [15].

These proposals are steps forward, however, the models should
be trained for other organic modifiers, stationary phases, analytes,
and they are only applicable for the trained dataset and there is no
possibility to extend their application for other organic modifiers.
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The aim of this work is to propose quantitative structure-
roperty relationship (QSPR) models based on the Jouyban-Acree
odel for modeling the retention factor of analytes with respect to

he nature of analyte, column, organic modifier as well as concen-
ration of organic modifier using a single model.

. Experimental

.1. Experimental data
The details of the experimental retention factors collected from
he literature [9] are listed in Table 1 of supplementary materi-
ls. The Abraham solvent coefficients of water, acetonitrile and

able 1
he Abraham solvent coefficients used in this work taken from a Ref. [16].

Solvent c e s 

Acetonitrile 0.413 0.077 0.32
Methanol 0.329 0.299 −0.67
Water −0.994 0.577 2.54

able 2
he characteristics of the columnsa and the mean percentage deviation (MPD) of fitting a

Abbreviation Column c′ e′ s′ a′

M-C18e LiChrospher 100 RP-18e 0.24 0.30 −0.48 −0.59 

M-C8  LiChrospher 100 RP-8 0.32 0.21 −0.35 −0.49 

M-PURe Purospher RP-18e 0.28 0.31 −0.50 −0.62 

Sym-C18 SymmetryShield RP-C18 0.02 0.39 −0.45 −0.43 

Sym-C8 SymmetryShield RP-C8 0.05 0.33 −0.32 −0.34 

a Further details of the columns could be found in the original Ref. [6].

able 3
he Abraham solute parameters of the analytes investigated in this work taken from Refs

No. Analyte E 

1 2,6-Dimethylphenol 0.86 

2  3,5-Dimethylphenol 0.82 

3  Acetophenone 0.82 

4  alpha-Naphthol 1.52 

5  alpha-Naphthylamine 1.67 

6 Aniline 0.96 

7  Anisole 0.71 

8  Benzyl alcohol 0.80 

9  Benzyl cyanide 0.75 

10  beta-Naphthol 1.52 

11 Bromobenzene 0.88 

12  Butylparaben 0.86 

13  Caffeine 1.50 

14  Chlorobenzene 0.72 

15  Dimethyl phalate 0.78 

16  Ethylbenzene 0.61 

17  Ethylbenzoate 0.69 

18  Ethylparaben 0.86 

19  Hydroquinone 1.00 

20  Methylbenzoate 0.73 

21  Methylparaben 0.90 

22  N,N-dimethylaniline 0.96 

23  o-Cresol 0.84 

24  o-Nitrotoluene 0.87 

25  o-Toluidine 0.97 

26  p-Cresol 0.82 

27  p-Ethylphenol 0.80 

28 Phenol 0.81 

29 Propylparaben 0.86 

30  Pyridine 0.63 

31 Toluene 0.60 
A 1218 (2011) 6454– 6463

methanol are listed in Table 1 [16]. The collected Abraham solvation
parameters for representing the column interactions are reported
in Table 2 [6].  Table 3 lists the numerical values of Abraham solute
parameters investigated in this work taken from Refs. [6,17].  In
addition to the experimentally measured solvation parameters,
these descriptors could be computed using Pharma-Algorithms
software [18] and this makes the prediction procedures more
feasible.
2.2. Computational methods

The Jouyban-Acree model for representation of the retention
factor of an analyte in a binary solvent mobile phase is [19]:

a b v

6 −1.566 −4.391 3.364
1 0.080 −3.389 3.512
9 3.813 4.841 −0.869

nd leave one column out analyses using the proposed equations.

b′ v′ MPD MPD  MPD MPD
Cross validated Fitted

Eq. (19) Eq. (20) Eq. (23) Eq. (24)

−1.95 1.95 11.9 28.0 11.3 27.2
−1.53 1.58 11.1 28.8 10.3 22.9
−1.97 1.95 16.0 27.3 13.4 27.5
−2.10 2.01 14.5 20.1 13.1 19.5
−1.99 1.89 16.6 28.3 13.9 21.6

Overall 14.0 26.5 12.4 23.7

. [6,17].

S A B V

0.79 0.39 0.39 1.06
0.84 0.57 0.36 1.06
1.01 0.00 0.48 1.01
1.05 0.60 0.37 1.14
1.26 2.00 0.57 1.19
0.96 0.26 0.50 0.82
0.75 0.00 0.29 0.92
0.87 0.39 0.56 0.92
1.15 0.00 0.45 1.01
1.08 0.61 0.40 1.14
0.73 0.00 0.09 0.89
1.35 0.69 0.45 1.55
1.60 0.00 1.33 1.36
0.65 0.00 0.07 0.84
1.40 0.00 0.84 1.43
0.51 0.00 0.15 1.00
0.85 0.00 0.46 1.21
1.35 0.69 0.45 1.27
1.00 1.16 0.60 0.83
0.85 0.00 0.46 1.07
1.37 0.69 0.45 1.13
0.84 0.00 0.42 1.10
0.86 0.52 0.31 0.92
1.11 0.00 0.28 1.03
0.92 0.23 0.59 0.96
0.87 0.57 0.32 0.92
0.90 0.55 0.36 1.06
0.89 0.60 0.30 0.78
1.35 0.69 0.45 1.41
0.84 0.00 0.52 0.68
0.52 0.00 0.14 0.86
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solvent. Since the number of curve-fitting parameters (the model
constants) is relatively high, it is a difficult task to provide more the-
oretical justifications for the proposed model and from this point of
view, it could be considered as an empirical expression. It is obvious

Eq.  (23)
y =  0.991 5x +  0.006 5

R 2 =  0.98 81
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Eq.  (24)
y = 0.9564x + 0.03581.00

1.50

2.00

2.50

3.00

3.50
A. Jouyban et al. / J. Chroma

og km = ϕ1 log k1 + ϕ2 log k2 + ϕ1ϕ2

2∑
j=0

Bj(ϕ1 − ϕ2)

j

(14)

here k is the retention factor of the analyte, ϕ denotes the volume
raction of the solvent in the binary solvent mobile phase, subscripts
, 1 and 2 are the mixed solvent mobile phase, components 1 and

, respectively, Bj is the model constant which represents various
olvent–solvent and analyte–solvent interactions and is calculated
y using a no intercept least square analysis. The numerical values
f k1 and/or k2 are very high/low, and the data could not be accu-
ately measured, therefore, two extreme k values (in the water rich
rea and organic modifier rich area) were considered as alternative
alues. As reported in an earlier work [19], it is possible to employ
wo curve-fit parameters instead of log k1 and log k2 (see Eq. (3) of
revious work [19]) and consider them as adjustable parameters.
q. (14) should be considered as a mathematical representation
ather than an equation derived from rigorous thermodynamic
odel [19]. However, the model produced reasonable accurate pre-

ictions after training by a minimum number of experimental data
oints (i.e. retention data in mono solvents and three data points

n mixed solvent). The required retention data in mixed solvent
obile phases to train the Jouyban-Acree model is a limitation

or the model and any attempt to overcome this limitation could
mprove its practical applicability. The Bj constants are functions of
nalyte’s chemical nature and the separation system under inves-
igation.

The constants of the Jouyban-Acree model could be correlated
ith the Abraham solvation parameters (of analytes and solvents)

or building a generally trained version of the model for predicting
he retention factor of analytes in mixed solvent mobile phases.
ur main hypothesis is that the model constants are functions of

he nature of the analytes, mobile and stationary phases and other
arameters of the analytical systems under investigation.

Eq. (14) provided accurate results for retention factor of
n analyte in a specified organic modifier and a given col-
mn. For various analytes in given analytical conditions with
ifferent solvent compositions, the model constants of Eq.
14) could be correlated with Abraham solute parameters
i.e. Bj = W1 + W2E + W3S + W4A + W5B + W6V). The Abraham solute
arameters could represent all possible interactions in the column
mong separation process. This is a similar approach which was
sed to derive a general LSER model based on quadratic equation,

.e. Eq. (12). The model could be extended as:

log km = ϕ1 log k1 + ϕ2 log k2

+ ϕ1ϕ2{W1 + W2E + W3S + W4A + W5B + W6V }
+ ϕ1ϕ2(ϕ1 − ϕ2){W ′

1 + W ′
2E + W ′

3S + W ′
4A + W ′

5B + W ′
6V }

+ ϕ1ϕ2(ϕ1 − ϕ2)2{W ′′
1 + W ′′

2 E + W ′′
3 S + W ′′

4 A + W ′′
5 B + W ′′

6 V }
(15)

nd by considering log k1 = ˛0 + ˛1E + ˛2S + ˛3A + ˛4B + ˛5V and
og k2 = ˇ0 + ˇ1E + ˇ2S + ˇ3A + ˇ4B + ˇ5V it is possible to convert Eq.
15) as:

log km = ϕ1{˛0 + ˛1E + ˛2S + ˛3A + ˛4B + ˛5V }
+  ϕ2{ˇ0 + ˇ1E + ˇ2S + ˇ3A + ˇ4B + ˇ5V }
+ ϕ1ϕ2{W1 + W2E + W3S + W4A + W5B + W6V }
+ ϕ1ϕ2(ϕ1 − ϕ2){W ′

1 + W ′
2E + W ′

3S + W ′
4A + W ′

5B + W ′
6V }

+ ϕ1ϕ2(ϕ1 − ϕ2)2{W ′′
1 + W ′′

2 E + W ′′
3 S + W ′′

4 A + W ′′
5 B + W ′′

6 V }

(16)
or representing the retention factors of various analytes using two
xperimental retention data and the computational predictions,
espectively [20]. When various organic modifiers were considered
ppropriate descriptors (in this work Abraham solvent parameters
re employed) should be added to the model for representing the
ffects of solvents. The results of statistical analyses revealed that
he most accurate form of the models are:
A 1218 (2011) 6454– 6463 6457

log km = ϕ1 log k1 + ϕ2 log k2

+ ϕ1ϕ2

{
L1 + L2[(c1 − c2)2] + L3[E(e1 − e2)2] + L4[S(s1 − s2)2]

+L5[A(a1 − a2)2] + L6[B(b1 − b2)2] + L7[V(v1 − v2)2]

}

+ ϕ1ϕ2(ϕ1 − ϕ2)

{
L′

1 + L′
2[(c1 − c2)2] + L′

3[E(e1 − e2)2] + L′
4[S(s1 − s2)2]

+L′
5[A(a1 − a2)2] + L′

6[B(b1 − b2)2] + L′
7[V(v1 − v2)2]

}

+ ϕ1ϕ2(ϕ1 − ϕ2)2

{
L′′

1 + L′′
2[(c1 − c2)2] + L′′

3[E(e1 − e2)2] + L′′
4[S(s1 − s2)2]

+L′′
5[A(a1 − a2)2] + L′′

6[B(b1 − b2)2] + L′′
7[V(v1 − v2)2]

}
(17

and

log km = ϕ1{˛0c1 + ˛1e1E + ˛2s1S + ˛3a1A + ˛4b1B + ˛5v1V }
+ ϕ2{ˇ0c2 + ˇ1e2E + ˇ2s2S + ˇ3a2A + ˇ4b2B + ˇ5v2V }

+  ϕ1ϕ2

{
L1 + L2[(c1 − c2)2] + L3[E(e1 − e2)2] + L4[S(s1 − s2)2]

+L5[A(a1 − a2)2] + L6[B(b1 − b2)2] + L7[V(v1 − v2)2]

}

+ ϕ1ϕ2(ϕ1 − ϕ2)

{
L′

1 + L′
2[(c1 − c2)2] + L′

3[E(e1 − e2)2] + L′
4[S(s1 − s2)2]

+L′
5[A(a1 − a2)2] + L′

6[B(b1 − b2)2] + L′
7[V(v1 − v2)2]

}

+ ϕ1ϕ2(ϕ1 − ϕ2)2

{
L′′

1 + L′′
2[(c1 − c2)2] + L′′

3[E(e1 − e2)2] + L′′
4[S(s1 − s2)2]

+L′′
5[A(a1 − a2)2] + L′′

6[B(b1 − b2)2] + L′′
7[V(v1 − v2)2]

}
(18

in which ˛, ˇ, W and L terms are the model constants [20]. The
(c1 − c2)2, (e1 − e2)2, (s1 − s2)2, (a1 − a2)2, (b1 − b2)2 and (v1 − v2)2

terms could represent the differences between mobile phase com-
ponents (i.e. organic modifier and water), where multiplying these
terms to analyte parameters (i.e. E, S, A, B and V) represents the
differences between the interactions of analyte with each com-
ponent of mobile phase lonely and the mobile phase as a single
R2 = 0.9564

-1.00

-0.50

0.00

0.50

-1 0 1 2 3 4

Fig. 1. Predicted vs. experimental logarithmic values of retention data.
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Fig. 2. Predicted vs. experimental data using Eqs. (23) and (24) regarding to analytes (a) mobile phases (b) and stationary phases (c).
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Table  4
Variations of independent variables.

Variable Range of variation Variable Range of variation Variable Range of variation

ϕ1ϕ2c′(c1 − c2)2 0.01–0.16 ϕ1ϕ2(ϕ1 − ϕ2) [c′(c1 − c2)2] 0.05 to −0.06 ϕ1ϕ2(ϕ1 − ϕ2)2 [c′(c1 − c2)2] 0.00–0.04
ϕ1ϕ2e′E(e1 − e2)2 0.00–0.04 ϕ1ϕ2(ϕ1 − ϕ2) [e′E(e1 − e2)2] 0.01 to −0.02 ϕ1ϕ2(ϕ1 − ϕ2)2 [e′E(e1 − e2)2] 0.00–0.01
ϕ1ϕ2s′S(s1 − s2)2 −0.13 to −2.08 ϕ1ϕ2(ϕ1 − ϕ2) [s′S(s1 − s2)2] 0.80 to −0.7 ϕ1ϕ2(ϕ1 − ϕ2)2 [s′S(s1 − s2)2] 0.00 to −0.48
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for each data point.
ϕ1ϕ2a A(a1 − a2) 0.00 to −8.94 ϕ1ϕ2(ϕ1 − ϕ2) [a A(a1 − a2) ] 

ϕ1ϕ2b′B(b1 − b2)2 −1.16 to −59.37 ϕ1ϕ2(ϕ1 − ϕ2) [b′B(b1 − b2)2] 

ϕ1ϕ2v′V(v1 − v2)2 3.05–14.98 ϕ1ϕ2(ϕ1 − ϕ2) [v′V(v1 − v2)2] 

hat any difference in the retention of analytes is due to the interac-
ions between analyte, column and mobile phases, and it is believed
hat the Abraham solvation parameters are the best descriptors to
epresent the extent of various possible interactions ranging from
ondon to hydrogen bonding forces. The applicability of Eq. (18)
as checked on 292 retention data sets of various analytes using
obile phases of water–methanol and water–acetonitrile mixtures

nd a certain stationary phase [20]. In these models, we used c, e, s,
, b and v coefficients of the solvents collected from the literature
16].

The Abraham solvent coefficients of Eqs. (17) and (18) derived
rom solubility data and represent only solvent effects on the reten-
ion. In these equations no variable representing the effects of the
tationary phases on the retention were employed. Considering the
esults of statistical analyses, the relevant independent variables
ould be considered in the model as:

log km = ϕ1 log k1 + ϕ2 log k2

+ ϕ1ϕ2

{
Z1 + Z2[c′(c1 − c2)2] + Z3[e′E(e1 − e2)2] + Z4[s′S(s1 − s2)2]

+Z5[a′A(a1 − a2)2] + Z6[b′B(b1 − b2)2] + Z7[v′V(v1 − v2)2]

}

+ ϕ1ϕ2(ϕ1 − ϕ2)

{
Z ′

1 + Z ′
2[c′(c1 − c2)2] + Z ′

3[e′E(e1 − e2)2] + Z ′
4[s′′S(s1 − s2)

+Z ′
5[a′A(a1 − a2)2] + Z ′

6[b′B(b1 − b2)2] + Z ′
7[v′V(v1 − v2)2

+ ϕ1ϕ2(ϕ1 − ϕ2)2

{
Z ′′

1 + Z ′′
2[c′(c1 − c2)2] + Z ′′

3[e′E(e1 − e2)2] + Z ′′
4[s′S(s1 − s2

+Z ′′
5[a′A(a1 − a2)2] + Z ′′

6[b′B(b1 − b2)2] + Z ′′
7[v′V(v1 − v2

here Z terms are the model constants.
As discussed in Eqs. (4), (5), (15) and (17), the Abraham solva-

ion parameters of the analytes, solvents and columns, e.g. e, E, e′,
ould represent the extent of various interactions in the separa-
ion system between analyte, mobile and stationary phases. It is
bvious that there is no rigorous theoretical justification behind
his combination and we prefer to consider Eq. (19) as an empirical
orrelation. However, Eq. (19) is able to represent the experimental
ata more accurate than other models reported in the literature. To
he best of our knowledge, there is no such a single model to cal-
ulate the effects of these variables all together and the available
odels consider one, two or three independent variables in their
odel building process.
By employing computational method (without employing new

xperimental k1 and k2 values, and experimental analyte parame-
ers), the general equation could be written as:

log km = ϕ1{˛0c′ + ˛1e′E + ˛2s′S + ˛3a′A + ˛4b′B + ˛5v′V }
+ ϕ2{ˇ0c′ + ˇ1e′E + ˇ2s′S + ˇ3a′A + ˇ4b′B + ˇ5v′V }

+ ϕ1ϕ2

{
Z1 + Z2[c′(c1 − c2)2] + Z3[e′E(e1 − e2)2] + Z4[s′S

+Z5[a′A(a1 − a2)2] + Z6[b′B(b1 − b2)2] + Z7[v′V
+ ϕ1ϕ2(ϕ1 − ϕ2)

{
Z ′

1 + Z ′
2[c′(c1 − c2)2] + Z ′

3[e′E(e1 − e2)2] + Z

+Z ′
5[a′A(a1 − a2)2] + Z ′

6[b′B(b1 − b2)2] + Z ′
7

+ ϕ1ϕ2(ϕ1 − ϕ2)2

{
Z ′′

1 + Z ′′
2[c′(c1 − c2)2] + Z ′′

3[e′E(e1 − e2)2] +
+Z ′′

5[a′A(a1 − a2)2] + Z ′′
6[b′B(b1 − b2)2] + Z
3 to −3.00 ϕ1ϕ2(ϕ1 − ϕ2) [a A(a1 − a2) ] 0.00 to −2.08
.8 to −19.95 ϕ1ϕ2(ϕ1 − ϕ2)2 [b′B(b1 − b2)2] 0.00 to −13.68
3 to −5.57 ϕ1ϕ2(ϕ1 − ϕ2)2 [v′V(v1 − v2)2] 0.00–3.45

(19)

The numerical values of these terms could be computed by
regressing log km against ϕ1c′, ϕ1e′E, ϕ1s′S, ϕ1a′A, ϕ1b′B, ϕ1v′V,
ϕ2c′, ϕ2e′E, ϕ2s′S, ϕ2a′A, ϕ2b′B, ϕ2v′V, ϕ1ϕ2, ϕ1ϕ2c′(c1 − c2),
ϕ1ϕ2e′E(e1 − e2)2, ϕ1ϕ2s′S(s1 − s2)2, ϕ1ϕ2a′A(a1 − a2)2,
ϕ1ϕ2b′B(b1 − b2)2, ϕ1ϕ2v′V(v1 − v2)2, ϕ1ϕ2(ϕ1 − ϕ2),
ϕ1ϕ2(ϕ1 − ϕ2)[c′(c1 − c2)2], ϕ1ϕ2(ϕ1 − ϕ2)[e′E(e1 − e2)2],
ϕ1ϕ2(ϕ1 − ϕ2)[s′S(s1 − s2)2], ϕ1ϕ2(ϕ1 − ϕ2)[a′A(a1 − a2)2],
ϕ1ϕ2(ϕ1 − ϕ2)[b′B(b1 − b2)2], ϕ1ϕ2(ϕ1 − ϕ2)[v′V(v1 − v2)2],
ϕ1ϕ2(ϕ1 − ϕ2)2, ϕ1ϕ2(ϕ1 − ϕ2)2[c′(c1 − c2)2],
ϕ1ϕ2(ϕ1 − ϕ2)2[e′E(e1 − e2)2], ϕ1ϕ2(ϕ1 − ϕ2)2[s′S(s1 − s2)2],
ϕ1ϕ2(ϕ1 − ϕ2)2[a′A(a1 − a2)2], ϕ1ϕ2(ϕ1 − ϕ2)2[b′B(b1 − b2)2] and
ϕ1ϕ2(ϕ1 − ϕ2)2[v′V(v1 − v2)2] using a no intercept least square
analysis. It should be noted that ˛,  ̌ and W terms in the above
mentioned models possess various numerical values and the pre-
dictions should be made using the trained version of these models.

The predictive ability of the models was  assessed in terms of the
mean percentage deviation (MPD) of observed (kobs.) and calculated
(kcal.) retention factors, defined by:

MPD  = 100
NDP

∑ ∣∣kcal. − kobs.

∣∣
kobs.

(21)

where NDP is the number of data points. In addition, we also cal-
culated the individual percentage deviation (IPD):

IPD = 100

{∣∣kcal. − kobs.

∣∣
kobs.

}
(22)
′
4[s′S(s1 − s2)2]

[v′V(v1 − v2)2]

}

 Z ′′
4[s′S(s1 − s2)2]

′′
7[v′V(v1 − v2)2]

}
(20)
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. Results and discussion

.1. General model

The available experimental km values collected from the litera-
ure were fitted to the proposed model and the model constants
ith probability of < 0.05 were included in the model. Non-

ignificant contribution of some solvation parameters is very
ommon in practical applications of the LSER models [5].  The
btained model after excluding the model constants with the p
alues of >0.05 is:

log km = ϕ1 log k1 + ϕ2 log k2

+ ϕ1ϕ2

{
0.085 − 0.537[c′(c1 − c2)2] − 5.530[e′E(e1 − e2

−0.017
[
a′A(a1 − a2)2] − 0.007

[
b′B(b1 − b2)2]

+ ϕ1ϕ2(ϕ1 − ϕ2)

{
−0.547 + 2.113[e′E(e1 − e2)2] − 0.023

−0.025[b′B(b1 − b2)2] − 0.113[v′V(v1

+ ϕ1ϕ2(ϕ1 − ϕ2)2

{
1.771[c′(c1 − c2)2] + 22.330[e′E(e1 −
+0.013[b′B(b1 − b2)2] + 0.046[v′V(v

his correlation was significant at p < 0.0005 and the F value of
647. The details of the computed MPD  values were listed in
able 1 of supplementary materials (see column 5).  The overall MPD
±SD) was 12.4 (±7.4)% and the number of data sets (NDS) were 310.

hen these MPD  values were analyzed considering the organic
odifier, the values were 11.6 (±6.4) and 13.2 (±8.2), respectively

or acetonitrile (NDS = 155) and methanol (NDS = 155). The pre-
icted values using this equation were fitted to the experimental

ata (Fig. 1 (for whole data set) and Fig. 2 (for subgroups of data
ets (i.e. analytes, mobile phases and columns)) and the slope and
egression coefficients were 0.996 and 0.988, respectively for all
ata.

able 5
ean percentage deviation (MPD) of fitted and predicted retention factors using one ana

Analyte Cross validated data, Eq. (19) Cross validated da

2,6-Dimethylphenol 7.7 25.0 

3,5-Dimethylphenol 9.2 29.6 

Acetophenone 8.6 19.1 

alpha-Naphthol 16.3 61.3 

alpha-Naphthylamine 23.7 74.1 

Aniline 12.1 30.3 

Anisole 11.0 17.7 

Benzyl alcohol 8.1 21.4 

Benzyl cyanide 8.7 23.4 

beta-Naphthol 13.7 65.8 

Bromobenzene 17.6 25.6 

Butylparaben 22.4 41.0 

Caffeine 29.5 25.3 

Chlorobenzene 15.6 23.2 

Dimethyl phethalate 13.4 18.2 

Ethylbenzene 22.5 30.2 

Ethylbenzoate 12.2 17.2 

Ethylparaben 10.2 25.7 

Hydroquinone 14.9 34.3 

Methylbenzoate 10.6 12.2 

Methylparaben 10.1 19.4 

N,N-dimethylaniline 10.2 23.4 

o-Cresol 7.6 23.6 

o-Nitrotoluene 11.3 19.1 

o-Toluidine 9.6 16.7 

p-Cresol 7.7 24.3 

p-Ethylphenol 13.9 13.5 

Phenol 10.5 22.7 

Propylparaben 14.3 30.0 

Pyridine 13.7 32.6 

Toluene 17.8 26.6 

Overall 13.4 25.6 
A 1218 (2011) 6454– 6463

 0.017[s′S(s1 − s2)2]

034
[
v′V(v1 − v2)2]

}

(a1 − a2)2]

)2]

}

] + 0.045[a′A(a1 − a2)2]

2)2]

}
(23)

Using a set of 32 analytes of different chemical properties, 19
different columns and a mobile phase of acetonitrile–water (30:70
v/v) it has been shown [22] that e′ and v′ coefficients favors the
column interactions, where s′, a′ and b′ act favorably in the mobile
phase. In this study, we found that the analyte positive or negative
effects on solvation coefficients of columns vanished. It seems that
the column effect on retention depends on the differences between
the column and mobile phase properties rather than their proper-
ties lonely. It is obvious from the developed model that the positive

or negative effect of each single property depends on the organic
modifier fraction in hydro-organic mobile phases. Table 4 shows
the numerical ranges of independent variables investigated in this

work in which all solvation coefficients and solvation parameters
possess both positive and negative effects on retention due to the
organic modifier fractions employed, i.e. ϕ1ϕ2, ϕ1ϕ2(ϕ1 − ϕ2), or
ϕ1ϕ2(ϕ1 − ϕ2)2.

lyte out trained models and the number of data points (N).

ta, Eq. (20) Fitted data, Eq. (23) Fitted data, Eq. (24) N

7.6 23.2 60
9.0 27.5 60
8.5 18.1 60

15.9 42.8 60
14.9 46.5 48
11.9 28.6 12
10.7 17.1 60

7.9 19.5 60
8.7 21.7 60

13.5 45.4 60
16.3 22.5 24
21.9 36.1 36
20.1 18.3 60
14.7 21.2 60
12.6 16.0 60
20.9 26.5 60
12.2 16.3 60
10.0 22.7 60
14.1 26.4 60
10.4 12.0 60

9.7 17.0 60
9.9 22.0 60
7.5 22.3 60

10.9 17.8 60
9.5 16.0 60
7.7 22.6 60

13.8 13.2 60
10.2 20.5 60
13.9 26.3 60
12.8 25.9 60
16.9 23.3 60
12.4 23.7
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Fig. 3. Relative frequency of IPD values produced using Eqs. (23) and (24).
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m

 2.520v′V }
 + 1.031v′V }

2)2] − 0.143[s′S(s1 − s2)2]

.330[v′V(v1 − v2)2]

}
(24)

Fig. 5. Relative frequencies of IPD values for leave one analyte out cross-validation
analysis.

The relative frequencies of IPD values using Eqs. (23) and (24)
showed in Fig. 3. About 70% of data predicted by the IPD values of
less than 15% which is acceptable for validated HPLC methods.
Fig. 4. The residuals vs. observed values plots for developed models.

When Eq. (20) was trained using the available data, the obtained
odel is:

log km = ϕ1{2.376c′ + 0.782e′E − 0.555s′S + 0.358a′A + 1.202b′B −
+ ϕ2{3.733c′ + 2.446e′E + 3.495s′S + 0.929a′A + 1.775b′B

+ ϕ1ϕ2

{
−0.988 − 4.551[c′(c1 − c2)2] − 11.480[e′E(e1 − e

−0.035[a′A(a1 − a2)2] − 0.040[b′B(b1 − b2)2] + 0
+ ϕ1ϕ2(ϕ1 − ϕ2){0.738[s′S(s1 − s2)2] − 0.029[b′B(b1 − b2)2] + 0

+ ϕ1ϕ2(ϕ1 − ϕ2)2{−2.863 − 3.593[c′(c1 − c2)2] − 0.041[b′B(b1 −
Fig. 6. Relative frequencies of IPD values for leave one column out cross-validation
analysis.

This correlation was  significant at p < 0.0005 and the F value of
4111 and the number of data points (NDP) fitted to the model
was  1860. The back-calculated km values were used to compute
the MPD  and standard deviation values for the data sets studied in
this work. The details of the values were listed in Table 1 of sup-
plementary materials (see column 6).  The overall MPD  (±SD) was
23.7 (±14.4)% and the number of data sets (NDS) was 310. When
these MPD  values were analyzed considering the organic modifier,
the values were 21.6 (±13.2) and 25.8 (±15.2), respectively for ace-
tonitrile and methanol. A number of data sets produced very large
MPD  values using Eq. (24), where predicted accurately by Eq. (23)
(e.g. data set numbers of 1, 12, 19, 38, . . .)  which can be due to the
calculated analyte parameters using software. Beyond this some
datasets produced large MPD  values both for Eqs. (23) and (24),
which can be regarded as outlier characteristics of them.

Considering the proposed computational method, the accuracy
of the predictions could be considered acceptable.

The optimum range of retention factors from practical point of
view are 1 < km < 10. When, these constrains were applied to Eqs.
(23) and (24), the produced MPDs were reduced to 11.0 and 19.3%,
respectively.
.197[v′V(v1 − v2)2]}
 b2)2] + 0.526[v′V(v1 − v2)2]}
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Table 6
Comparison of the proposed models with a number of basic and combined models.

Equation numbers ϕ Organic modifier Analyte Column MPD  SD R2

(3) Yes No No No 571.54 431.11 0.7304
(7) No No Yes No 19.38 8.26 0.9679

s No 32.44 19.86 0.9249
s Yes 12.46 4.97 0.9885
s Yes 23.71 10.77 0.9564
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Fig. 7. Predicted vs. observed values for the studied models.
(13) Yes  No Ye
(23)  Yes Yes Ye
(24)  Yes Yes Ye

The plot of the residuals vs. the observed data (Fig. 4) showed the
ormal distribution of residuals and no overestimations or under
stimations for a special set of analytes or organic modifier or
olumns have been determined.

.2. Cross-validation of the general model

Eqs. (19) and (20) were trained using all data points except data
f one analyte which was excluded from the training set (leave one
ut cross-validation). The trained models were used to predict the
etention factor of the excluded analyte and the computed MPDs
re listed in Table 5 along with the MPDs of Eqs. (23) and (24). The
ifferences between the MPDs of the fitted and predicted data using
q. (20) was small revealing that the model was robust and could
e used for predicting retention factors of un-measured analytes.

In the next cross-validation procedure, the retention data of
arious analytes collected using a specific column were excluded
rom the training process of the models and then the retention fac-
ors of the excluded set were predicted. The obtained MPDs for the
redicted data using Eqs. (19) and (20) are listed in Table 2.

Figs. 5 and 6 show the relative frequencies of described cross-
alidation procedures respectively for leave one analyte out and
ne column out anlaysis. The error trends are similar to the fitted
PD values and about 70% of data predicted by the errors less than
5%.

. Comparison with basic models

The developed models’ advantage and disadvantage in compari-
on with previously developed basic models (i.e. LSER, general LSER
odel, and Oscik’s equation) are investigated using published data

ets. The results are summarized in Table 6 and Fig. 7. The summary
f calculation methods for each model is provided in introduction
nd the details could be found in the literature. Its clear from results
hat the newly developed general method is able to predict the
etention data more accurately (even better than local models for
ach specific data set) while its high number of fitting parameters
s a disadvantage.

About the applicable organic modifier range of the developed
ethod, it should be noted that the predicted log k2 values are

ependent to the organic modifier (such as all other models) and
lthough applicable range were improved (10–90%), but it is not
pplicable for whole range (0–100%) of organic modifier.

The only model which provided an organic modifier indepen-
ent column parameter is the proposed models (Table 6) and there

s not a similar model which is able to model all retention affecting
arameters (i.e. column, organic modifier, mobile phase compo-
ition and analyte) simultaneously. This model is also capable of
odeling the 5th parameter (i.e. temperature) as shown in a pre-

ious work [21].
In comparison with other solvation parameter based models,

his method is so simpler with regard to the nature of analyte sol-

ation parameters and organic modifier solvation coefficients have
een determined using solubility experiments, where for other
odels the model parameters should be computed using chro-
atographic data which are more difficult to obtain than solubility
experiments. The only parameters which should be obtained using
chromatographic data are column solvation parameters which

have been determined for most of the common columns and could
be found from the literature [6,14,23,24].
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. Conclusion

A generally trained model was proposed for predicting the
etention factor of analytes in RP-HPLC by combining the Jouyban-
cree and Abraham models. The proposed model has the advantage
f modeling four variables, i.e. the analyte structure, the col-
mn  type, the nature and concentration of the organic modifier

n the mobile phase using a single model. Eq. (19) employs two
xperimental km values, i.e. k1 and k2 values, for each analyte
nd provides better calculations. Whereas, Eq. (20) is a computa-
ional model and predicts the km values without any experimental
nput data. Considering the combined effect of column, mobile
hase (type and concentration of organic modifier) and analytes’
roperties on the retention time, the developed general model
an represent the variability of retention data well, while its
rediction capability and applicability (for other columns and
ther organic modifiers) can be improved using more diverse set
ccording to the organic modifier and column types in training
rocedure.

. Precautionary note

The proposed general models were trained using a limited num-
er of analytes, stationary phases, organic modifiers and to provide
etter predictions, more experimental data should be employed. In
his work, we have shown the capability of the models to represent
he effect of four discussed variables on the retention of analytes in
PLC.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.chroma.2011.07.034.
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